The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  0  X  0  X  0  X  0  X  X  X  X  X  X X^2  X  X X^2  X X^2  X X^2  1  1 X^2 X^2 X^2  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X^2  1  1  1  1  1  0  X
 0  X  0 X^2+X  0 X^2+X  0  X  0 X^2+X  0  X  0 X^2+X  0  X X^2 X^2+X X^2  X X^2 X^2+X X^2  X X^2 X^2+X X^2  X X^2 X^2+X X^2  X X^2+X  X X^2+X  X X^2+X  X X^2+X  X  0  0  0 X^2 X^2  X  X X^2  X  X  X  X  X  X  0  0 X^2  0  0 X^2  0 X^2  0 X^2 X^2 X^2 X^2+X X^2+X X^2+X  X X^2+X  X  X  X  0  0  0 X^2 X^2 X^2+X  X X^2+X  0  0
 0  0 X^2  0  0  0 X^2  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0 X^2  0  0 X^2  0 X^2  0 X^2  0 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2 X^2  0  0  0  0  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2 X^2  0  0  0 X^2  0
 0  0  0 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2  0  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0  0  0 X^2 X^2 X^2 X^2  0  0 X^2 X^2  0  0 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0  0  0  0  0 X^2 X^2  0  0 X^2  0 X^2 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2  0 X^2  0  0
 0  0  0  0 X^2 X^2 X^2 X^2 X^2  0  0 X^2  0 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2  0 X^2  0  0 X^2  0 X^2 X^2  0  0 X^2 X^2  0 X^2  0 X^2 X^2  0 X^2  0 X^2  0 X^2 X^2  0  0 X^2  0 X^2 X^2  0 X^2  0 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2  0  0  0 X^2 X^2  0  0  0 X^2 X^2 X^2  0  0  0

generates a code of length 84 over Z2[X]/(X^3) who�s minimum homogenous weight is 81.

Homogenous weight enumerator: w(x)=1x^0+34x^81+83x^82+21x^84+24x^85+71x^86+7x^88+4x^89+5x^90+3x^92+1x^110+2x^113

The gray image is a linear code over GF(2) with n=336, k=8 and d=162.
This code was found by Heurico 1.16 in 0.416 seconds.